Pieri’s Rule for Flag Manifolds and Schubert Polynomials
نویسنده
چکیده
We establish the formula for multiplication by the class of a special Schubert variety in the integral cohomology ring of the flag manifold. This formula also describes the multiplication of a Schubert polynomial by either an elementary symmetric polynomial or a complete homogeneous symmetric polynomial. Thus, we generalize the classical Pieri’s rule for symmetric polynomials/Grassmann varieties to Schubert polynomials/flag manifolds. Our primary technique is an explicit geometric description of certain intersections of Schubert varieties. This method allows us to compute additional structure constants for the cohomology ring, which we express in terms of paths in the Bruhat order on the symmetric group.
منابع مشابه
A Pieri-type Formula for the Equivariant Cohomology of the Flag Manifold
The classical Pieri formula is an explicit rule for determining the coefficients in the expansion s1m · sλ = ∑ c 1,λ sμ , where sν is the Schur polynomial indexed by the partition ν. Since the Schur polynomials represent Schubert classes in the cohomology of the complex Grassmannian, this gives a partial description of the cup product in this cohomology. Pieri’s formula was generalized to the c...
متن کاملOn a Quantum Version of Pieri's Formula
We give an algebro-combinatorial proof of a general version of Pieri’s formula following the approach developed by Fomin and Kirillov in the paper “Quadratic algebras, Dunkl elements, and Schubert calculus.” We prove several conjectures posed in their paper. As a consequence, a new proof of classical Pieri’s formula for cohomology of complex flag manifolds, and that of its analogue for quantum ...
متن کاملRC-Graphs and Schubert Polynomials
Bergeron was supported by the National Science Foundation. Billey was supported by the National Physical Science Consortium, IBM and UCSD. Using a formula of Billey, Jockusch and Stanley, Fomin and Kirillov have introduced a new set of diagrams that encode the Schubert polynomials. We call these objects rc-graphs. We define and prove two variants of an algorithm for constructing the set of all ...
متن کاملar X iv : a lg - g eo m / 9 70 30 01 v 1 2 8 Fe b 19 97 SCHUBERT POLYNOMIALS , THE BRUHAT ORDER , AND THE GEOMETRY OF FLAG MANIFOLDS
We illuminate the relation between the Bruhat order and structure constants for the polynomial ring in terms of its basis of Schubert polynomials. We use combinatorial, algebraic, and geometric methods, notably a study of intersections of Schubert varieties and maps between flag manifolds. We establish a number of new identities among these structure constants. This leads to formulas for some o...
متن کاملQuantum double Schubert polynomials, quantum Schubert polynomials and Vafa-Intriligator formula
We study the algebraic aspects of equivariant quantum cohomology algebra of the flag manifold. We introduce and study the quantum double Schubert polynomials S̃w(x, y), which are the Lascoux– Schützenberger type representatives of the equivariant quantum cohomology classes. Our approach is based on the quantum Cauchy identity. We define also quantum Schubert polynomials S̃w(x) as the Gram–Schmidt...
متن کامل